Abramowitch, S. D., Feola, A., Jallah, Z., & Moalli, P. A. (2009). Tissue mechanics, animal models, and pelvic organ prolapse: A review. European Journal of Obstetrics & Gynecology and Reproductive Biology, 144, S146–S158. https://doi.org/10.1016/j.ejogrb.2009.02.022
Baah-Dwomoh, A., McGuire, J., Tan, T., & De Vita, R. (2016). Mechanical properties of female reproductive organs and supporting connective tissues: A review of the current state of knowledge. Applied Mechanics Reviews, 68(6). https://doi.org/10.1115/1.4034442
Buchanan, L. M., Domingo, M. J., White, S. E., Vanoven, T. N., Karbasion, N., Bersi, M. R., Pence, I. J., Florian-Rodriguez, M., & Miller, K. S. (2023). Advances in vaginal bioengineering: Applications, techniques, and needs. Current Research in Physiology, 6, 100111. https://doi.org/10.1016/j.crphys.2023.100111
Chen, S., & Grimm, M. J. (2020). Childbirth Computational Models: Characteristics and applications. Journal of Biomechanical Engineering, 143(5). https://doi.org/10.1115/1.4049226
Dubik, J., Alperin, M., & De Vita, R. (2025). The biomechanics of the vagina: a complete review of incomplete data. Npj Women S Health, 3(1). https://doi.org/10.1038/s44294-024-00047-7
Grimm, M. J. (2021). Forces Involved with Labor and Delivery—A Biomechanical Perspective. Annals of Biomedical Engineering, 49(8), 1819–1835. https://doi.org/10.1007/s10439-020-02718-3
Miller, K. S., Myers, K., & Oyen, M. (2019a). Bioengineering in women’s health: part I. Interface Focus, 9(4), 20190042. https://doi.org/10.1098/rsfs.2019.0042
Miller, K. S., Myers, K., & Oyen, M. (2019b). Bioengineering in women’s health, volume 2: pregnancy—from implantation to parturition. Interface Focus, 9(5), 20190081. https://doi.org/10.1098/rsfs.2019.0081
Myers, K. M., & Elad, D. (2017). Biomechanics of the human uterus. WIREs Systems Biology and Medicine, 9(5). https://doi.org/10.1002/wsbm.1388
Myers, K. M., Feltovich, H., Mazza, E., Vink, J., Bajka, M., Wapner, R. J., Hall, T. J., & House, M. (2015). The mechanical role of the cervix in pregnancy. Journal of Biomechanics, 48(9), 1511–1523. https://doi.org/10.1016/j.jbiomech.2015.02.065
Scott, A. K., & Oyen, M. L. (2024). Virtual pregnancies: predicting and preventing pregnancy complications with digital twins. The Lancet Digital Health, 6(7), e436–e437. https://doi.org/10.1016/s2589-7500(24)00086-4
Westervelt, A. R., & Myers, K. M. (2017). Computer modeling tools to understand the causes of preterm birth. Seminars in Perinatology, 41(8), 485–492. https://doi.org/10.1053/j.semperi.2017.08.007
Yoshida, K. (2023). Bioengineering and the cervix: The past, current, and future for addressing preterm birth. Current Research in Physiology, 6, 100107. https://doi.org/10.1016/j.crphys.2023.100107
Yoshida, K., Jayyosi, C., Lee, N., Mahendroo, M., & Myers, K. M. (2019). Mechanics of cervical remodelling: insights from rodent models of pregnancy. Interface Focus, 9(5), 20190026. https://doi.org/10.1098/rsfs.2019.0026
Zambuto, S. G., Scott, A. K., & Oyen, M. L. (2024). FDA Modernization Act 2.0 and reproductive research. Nature Reviews Bioengineering. https://doi.org/10.1038/s44222-024-00252-8